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One-dimensional systems undergoing short-wavelength instability of spatially uniform states are studied. It
is assumed that the spectrum of perturbations of the uniform statesgk has a long-wavelength slowly-relaxing
branch, detaching from a neutrally stable~Goldstone! mode with zero wave number, whose existence is a
consequence of the problem’s symmetry. The other important feature of the problem is quadratic nonlinearity
that provides coupling between slowly-varying short-wavelength and long-wavelength modes. It is shown that
the case is characterized by mixing of different scales in perturbative calculations. The latter makes the pattern
stability problem essentially nonlocal and sensitive to very subtle characteristics of the spectrumgk and
nonlinear mode-coupling. The equation governing longitudinal seismic waves in viscoelastic media is studied
in detail as the simplest particular example of such systems. Possible extension of the obtained results to other
physical problems, including electroconvection in a homeotropically aligned nematic layer and permeation of
cholesterics or smectics in capillaries, is discussed.@S1063-651X~96!11910-3#

PACS number~s!: 47.10.1g, 47.20.Ky, 81.10.Aj, 82.40.Py

INTRODUCTION

In the present paper the pattern formation problem in sys-
tems with short-wavelength instability and slow long-
wavelength dynamics associated with the problem’s symme-
try is studied. One of the simplest realizations of the problem
is connected with the equation
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50. ~1!

The equation was proposed in Ref.@1# to describe propaga-
tion of longitudinal seismic waves in viscoelastic media.
Here the real control parameter« is supposed to be small and
v is a scalar quantity, which has the meaning of the dimen-
sionless displacement velocity.

The trivial solution of Eq.~1!, v[0, being stable at
«,0, undergoes at«.0 short-wavelength instability with
respect to infinitesimal spatially periodic perturbations of the
form

dv}exp~gkt1 ikx!, ~2!

with wave numbers from a narrow band, centered around the
point k51.

Other examples of systems of such a kind may exhibit
Rayleigh-Bénard convection with the so-called ‘‘free-slip’’
boundary conditions@2–4#, systems with Galilean invariance
@5#, traveling front in phase transition phenomena or in
reaction-diffusion systems@6,7#, and others@8#.

Among the variety of problems there are two of special
interest. Both of them belong to physics of liquid crystals.
The first problem corresponds to electroconvection in a nem-

atic layer with homeotropic boundary conditions@9–12#, the
second to the so-calledpermeationof cholesterics or smec-
tics at their motion through capillaries@13,14#. We will re-
turn to these two problems in Sec. IV of the present paper.

The main advantage of Eq.~1! compared to these ex-
amples is its relative simplicity. The latter provides the op-
portunity to see quite clearly the basic features of the phe-
nomenon that are not obscured by a number of minor details,
and to trace back close connections of these features with the
problem’s symmetry.

Equation~1! was already studied by Malomed@15#. Start-
ing from this equation, he arrived at the system of the
coupled generalized Ginzburg-Landau equations for slowly-
varying amplitudes and analyzed solutions of the system and
their stability. However, the generalized Ginzburg-Landau
equations considered in Ref.@15# are inadequate to study
underlying Eq.~1!. The point is that Eq.~1! has additional
~compared to the conventional spatiotemporal translations
and spatial reflections! symmetry. The symmetry gives rise
to certain peculiarities of perturbative calculations on this
equation of the same nature as those discussed earlier in the
case of the free-slip convection@3,4#. As a result, some cor-
rections to the amplitude equations higher-order in«, omit-
ted in Ref.@15#, contribute terms of leading order to the final
dispersion equation in the pattern stability problem
(«-scale-mixing!. In what follows the analysis of Eq.~1! free
from the above-mentioned incorrectness of Ref.@15# is de-
veloped. It is shown that at small« all steady spatially peri-
odic solutions of Eq.~1! are unstable, contrary to Ref.@15#,
where the finite range of stability was found.

However, the main goal of the present paper is not to
correct the results of Ref.@15#. The goal is, considering Eq.
~1! as the simplest particular example of the systems with
short-wavelength instability and additional continuous group
of symmetry, to call attention to the fact that properties of*Electronic address: tribel@ms.u-tokyo.ac.jp

PHYSICAL REVIEW E NOVEMBER 1996VOLUME 54, NUMBER 5

541063-651X/96/54~5!/4973~9!/$10.00 4973 © 1996 The American Physical Society



these systems differ from conventional so drastically that it is
worth singling them out into a separate class of pattern-
forming systems.

The structure of the paper is as follows. In Sec. I a family
of steady specially periodic solutions to equations of the type
of Eq. ~1! is obtained. In Sec. II the peculiarities of the sta-
bility analysis of these solutions related to the
«-scale-mixing are discussed and the origin of the mixing is
revealed. In this section the adequate approach to the stabil-
ity problem is developed. The section ends in the derivation
of the dispersion equation for small perturbations of the
steady spatially periodic solutions. In Sec. III the dispersion
equation is analyzed. Section IV is devoted to general dis-
cussion of the results.

I. SPATIALLY PERIODIC PATTERNS

First of all let us show that Eq.~1! does possess the ad-
ditional symmetry. With this end in view we consider the
equation
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50. ~3!

Differentiating it with respect tox and renaming 2ux as v,
we reduce Eq.~3! to Eq.~1!; that is to say, both the equations
are equivalent. Note now that besides the conventional sym-
metry transformations

t→t1const, ~4!

x→x1const, ~5!

x→2x, ~6!

Eq. ~3! is invariant under the transformation

u→u1const. ~7!

Explicit manifestation of this additional symmetry makes Eq.
~3! much more convenient for the subsequent analysis com-
pared to Eq.~1!.

Linearizing Eq.~3! about the trivial stateu[0 and taking
the perturbations in the same form as that in Eq.~2!, we can
easily obtain the spectrumgk . The spectrum is

gk5k2@«2~k221!2#. ~8!

Qualitative difference between expression~8! and the cor-
responding spectra of the conventional problems, such as
Rayleigh-Bénard convection with the rigid~no slip! bound-
ary conditions@8#, is vanishing ofgk at k50. In turn, the
vanishing is an apparent consequence of symmetry transfor-
mation~7! that generates a neutrally stable~Goldstone! mode
du5const in the spectrum of perturbations of the trivial
state.

At «.0 there is a band of unstable perturbations, whose
boundariesk1,2 are defined by the conditionsgk1,2

50,gk.0

at k1,k,k2. In particular, at 0,«!1 we obtain

k1,22157
A«

2
@11O~A«!#. ~9!

Looking for nonlinear spatially periodic solutions to Eq.
~3!, it is natural to represent them in the form of Fourier
series, i.e.,

u~x,t !5 (
n52`

`

Unk~ t !e
inkx, Unk* 5U2nk . ~10!

Substituting Eq.~10! into Eq. ~3!, we arrive at the following
set of coupled equations for the Fourier coefficients~ampli-
tudes! Unk with nÞ0:

dUnk

dt
5gnkUnk1k2 (

l52`

`

l ~n2 l !UlkU ~n2 l !k , ~11!

and a detached equation forU0(t) obtained from this set at
n50:

dU0

dt
52k2(

l
l 2uUlku2. ~12!

Thus, the amplitudeU0(t) is slaved to those withnÞ0.
An interesting consequence of Eq.~12! is that any nontrivial
dynamics yieldsnegativecorrections toU0(t). However, be-
ing x-independent, the mode withn50 plays no role in pat-
tern formation and always may be excluded from the prob-
lem by means of the transformationũ(x,t)5u(x,t)2U0(t).

As for the amplitudes withnÞ0, truncating the set of
equations at finiteunu.2, it is easy to find that, at anyk from
the segmentk1,k,k2, there is a steady solution to these
equations of the form

Unk5(
m

Unk
~m! , Unk

~m!5O~«~ unu12m!/2!;

nÞ0, m50,1,2, . . . . ~13!

For example, atn561,62, we obtain

uUku252
gkg2k

4k4
@11O~«!#, ~14!

U62k52
k2U6k

2

g2k
@11O~«!#. ~15!

Note that at small« and k1,k,k2 the quantitygk , being
positive, has the order«, while g2k,0 and is of order 1.

The errors of Eqs.~14! and ~15! are connected with the
truncation procedure exclusively — expressions forgk and
g2k are regarded here asexactones, given by Eq.~8!. On the
other hand, since Eqs.~14! and ~15! are valid only at«!1,
the expressions forgk andg2k may be expanded in powers
of small differencek[k21, see Eq.~9!. In this case to
lowest order in the expansion parameter Eqs.~14! and ~15!
read as follows:

uUku259~«24k2!@11O~A«!#, ~16!

U62k5
U6k
2

36
@11O~A«!# ~17!
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@note the different accuracy of Eqs.~14! and ~15! and Eqs.
~16! and ~17!#.

II. PATTERN STABILITY PROBLEM

As it was already mentioned in the Introduction, stability
analysis of the steady spatially periodic solutions obtained in
the preceding section requires high accuracy of intermediate
calculations. To arrive at the right stability conditions in the
case of the«-scale-mixing we must consecutively increase
accuracy of intermediate calculations until the stability con-
ditions stop to change in a leading approximation. However,
later we will see that only a few higher-order terms in inter-
mediate expressions produce a contribution of leading order
to the final stability conditions, while all other corrections
are negligible. For this reason to simplify the calculations it
is important to select among the variety of equivalent ap-
proaches to the pattern stability problem the most effective
one, which allows us to detect the ‘‘crucial’’ corrections
without calculations of those that may be neglected. In the
generally accepted method of slowly-varying amplitudes
each higher-order term has itsindividual structure and there-
fore has to be calculatedexplicitly. The latter makes rather
inconvenient application of the method to the problem under
consideration. Much more beneficial is representation of the
steady solution in the form of Eqs.~10! and ~13!, where
explicit expressions for the amplitudesUnk are not used until
the final stage of calculations, while perturbations of this
solution are written as follows:

du5est(
n

Vnk1pe
i ~nk1p!x, ~18!

where all the coefficientsVnk1p are constants.
Linearizing Eq. ~3! about the unperturbed solution, we

easily derive the following set of equations forVnk1p :

~s2gnk1p!Vnk1p22(
l

~n2 l !~ lk1p!kU~n2 l !kVlk1p50.

~19!

Note that besides the above-mentioned convenience of
calculations such an approach provides the opportunity to
obtain the final stability conditions, employing just qualita-
tive features of the spectral curvegk , without the concrete
definition of its particular form that, actually, is a natural
generalization of the problem.

Truncation of the set of Eq.~19! is the key point of the
analysis. Therefore let us discuss it in detail. Formally the
procedure is trivial: taking some integerN and dropping all
Vnk1p with unu.N, we obtain a system of 2N11 linear
equations for remainingVnk1p . Next, as usual, the disper-
sion equation fors(p,k) is obtained by equating the deter-
minant of this system to zero. Then,N increases by onewith
simultaneous increase of accuracy of calculations of ampli-
tudes U(n2 l )k, the routine is repeated, and so on. The ques-
tion is to find the adequate value ofN to terminate the rou-
tine.

As always, it is reasonable to expect for unstable pertur-
bations thats5O(«) andp5O(A«) — a guess that will be
verified later, see Sec. III. Besides, atp5O(A«) and

k1,k,k2 @i.e.,k5O(A«) or less than that, see Eq.~16!# the
quantitiesgnk1p are of order« at n50,61 and of order 1
@gnk1p52n2(n221)21O(A«)# at any other values ofn,
see Eqs.~8! and~9!. Thus,s in Eq. ~19! cannot be neglected
compared tognk1p at least at three values ofn, namely, at
n50,61, which correspond to the wave numbersp and
6k1p, respectively, i.e., the lowest approximation toN to
begin with isN51. It yields acubicdispersion equation for
s. Taking into account the guesss5O(«), we arrive at the
conclusion that the discussed dispersion equation must be
accurateat leastto O(«3) inclusively.

The dispersion equation atN51 reads as follows:

U s2g2k1p 2kpU2k 4k~k1p!U22k

22k~2k1p!Uk s2gp 2k~k1p!U2k

24k~2k1p!U2k 22kpUk s2gk1p
U50.

~20!

According to the general routine, now we have to increase
N considering, step by step, determinants 535, 737, etc.,
where each next is obtained from previous by ‘‘framing’’ it
in one additional top and bottom row, and one left and right
column. Note now that all elements of the ‘‘frames’’ except
those on the leading diagonal have a certain smallness in«.
As for the elements on the leading diagonal, they have the
form s2g6nk1p , wheres5O(«) and is small compared to
g6nk1p @we recallg6nk1p5O(1) at unu.1#. It means that
at anyN.1 terms of lowest order~both in « and in s!
generated by evaluation of the corresponding determinant,
are products ofg6nk1p from the leading diagonal of the
‘‘frames’’ and determinant~20!. In other words, increase of
N does not change the lowest order in« of the dispersion
equation, compared to Eq.~20!, i.e., thenecessaryaccuracy
O(«3) simultaneously issufficientto the lowest approxima-
tion.

Proceeding with practical calculations it is convenient to
transform rows of the ‘‘frame’’ to those of a triangular ma-
trix. In this case the dispersion equation at anyN.1 is re-
duced to the form of Eq.~20!, where the elements of the
determinant receive certain corrections. Physically such a
procedure corresponds to exclusion of slaved modes.

At the moment let us pay attention to a remarkable pecu-
liarity of determinant~20!: the lowest order of terms its
evaluation yields is not«3 — it is «5/2, see, e.g., the product
@4k(k1p)U22k#2kpUk@2k(2k1p)Uk#. Note that even if
terms of order«5/2 cancel each other out entirely, it may not
be the case forcorrectionsto these terms. The latter means
that to arrive at the dispersion equation with accuracy
O(«3) we must take into accountall correctionswith rela-
tive smallness to orderA« to all elements of determinant
~20! but the one standing on the middle of the leading diag-
onal, i.e., s2gp . In particular, the relative smallness of
dropped terms in expressions~14! and ~15! is O(«) and
therefore these expressions may be used in their present
form, while the accuracy of Eqs.~16! and ~17! is not suffi-
cient for our purposes. The discussed peculiarity of determi-
nant ~20! is the actual grounds for the«-scale-mixing.
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It is a matter of straightforward calculations to obtain that
under the specified accuracy, reduction of the ‘‘frame’’ to a
‘‘triangular’’ form generates corrections only to the two mar-
ginal elements of the leading diagonal of determinant~20!,
and the corrections do not change atN.2. The corrected
elements read as follows:

s2g6k1p→s2g6k1p2
4k2~p6k!~p62k!uUku2

g62k1p

This replacement in Eq.~20! yields the desirable dispersion
equation.

Expandingg6k1p in powers of smallp andk[k21 @we
recall p5O(A«) andk is not greater than that#, evaluating
the determinant, and dropping terms of order higher than
«3, after trivial but rather tedious calculations we arrive at
the following dispersion equation:

s31a1s
21a2s1a350, ~21a!

a1~k,p!52gk2g19p
22gp , ~21b!

a2~k,p!52@~2g21g19!gk1~gk8!2#p2

2~2gk2g19p
2!gp1S g19

2 D 2p4, ~21c!

a3~k,p!52
2

k
g2kgkgk8p

214~g22g28!gk
2p2

1S g192
g1-

3 Dg2gkp
4

1H @~gk8!21g19gk#p
22S g19

2 D 2p4J gp .

~21d!

Here primes denote derivatives with respect tok and sub-
scripts stand for the values ofk, so that, for example,g19 is
the value ofd2gk /dk

2 at k51 (k50), i.e., just a number of
order 1; meanwhilegp ,gk ,gk8 , andg2k ~unspecified values
of the subscripts! means that they are functions ofp, k, and
2k, respectively.

III. ANALYSIS OF THE DISPERSION EQUATION

First of all let us examine the dispersion equation~21! in
the limit p→0 ~sidebandperturbations!. In this limit Eq.
~21! may be written in the following form:

s312gks
21b2p

2s1b3p
250, ~22!

where coefficientsb2,3 do not depend onp, being certain
functions ofk, whose explicit form may be easily obtained
from comparison of Eq.~22! with Eqs.~21!. The double root
s1,250 of Eq. ~22! at p50 corresponds to two Goldstone
modes originated in symmetry transformations~5! and ~7!,
respectively. Building up the solution of Eq.~22! in powers
of p, we can find the twoGoldstone branches, detaching
from these modes:

s1,256pA2
b3
2gk

1
p2

4gk
S b3
2gk

2b2D1O~p3!. ~23!

Sincegk is positive atk1,k,k2, stability of these branches
are defined by sign ofb3, and by interplay of the coefficients
b3/2gk andb2 in the second term on the right-hand side of
Eq. ~23!. The evident stability conditions are
2gkb2.b3.0.

Let us focus attention on the coefficientb3. It is easy to
see from Eq.~21d! that

b352
2

k
g2kgkgk814~g22g28!gk

2 .

Term 4(g22g28)gk
2 is obviously of order«2. As for term

22g2kgkgk8/k it should be analyzed more carefully. We be-
gin the analysis with the casek5O(A«). The leading ap-
proximation tok is 1 and tog2k it is g25O(1). Themost
general expression forgk may be written asf (k)(«2ck2).
Here f (0)51 and f 8(0), c are constants of order 1, so that
gk5O(«). For gk8 we havegk85g181g19k1O(k2), where
g185O(«) andg195O(1), seeabove the expression forgk .
At k5O(A«) it yieldsgk85g19k1O(«)5O(A«). Finally, at
the specifiedk we obtain 22g2kgkgk8/k522g2g19gkk
1O(«2)5O(«3/2), which generates tob3/2gk the following
leading approximation:b3/2gk52g2g19k1O(«)5O(A«).
Taking into account that, as it is clearly seen from Eq.~21c!,
b25O(«), we arrive at the conclusion that atk5O(A«)
termb2 on the right-hand side of Eq.~23! may be neglected
compared tob3/2gk . However, it immediately follows from
Eq. ~23! that the neglect ofb2 yields instability associated
either with the first term on the right-hand side of this equa-
tion (b3/2gk,0) or with the second one (b3/2gk.0).

Approaching zero,k becomes of order« that makes the
neglect of b2 in Eq. ~23! irrelevant. Thus, the case
k5O(«) should be considered separately. Note that due to
the obtained instability of all the spatially periodic solutions
at k5O(A«), the only opportunity for the solutions to be
stable may be associated with the just specified values ofk
of order «. Since the result practically does not depend on
the concrete expressions forb2,3, it reflects a generic feature
of the systems with additional symmetry — the stability
band for spatially periodic solutions in these systems nar-
rows dramatically fromO(A«) in the conventional cases@8#
to O(«) @3,4,12,15,18#.

Proceeding with the analysis atk5O(«) it is more con-
venient to employ forgk the explicit expression~8!, since
general formulas~21b!–~21d! for the coefficientsa1,2,3 result
in a very awkward dispersion equation~21a!. Then, expand-
ing a1,2,3 in powers ofk, introducing new dimensionless
variables

z[
s

«
, x[

k

«
, z[

p

A«
, ~24!

and dropping terms higher order in« that appear due to the
decrease ofk from O(A«) to O(«), we can reduce Eq.~21!
to the following nondimensional form:

z31c1z
21c2z1c350, ~25a!
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c1[219z2, c2[2~41112z2!z2,

c3548~11212x!z22568z4116z6. ~25b!

Note that the fact that the dispersion equation may be
reduced to a nondimensional form by the scale transforma-
tion ~24! justifies the estimations of the characteristic values
of s andp made in the preceding section.

Comparison of Eqs.~22!, ~23!, and~25! brings about the
conclusion that the analyzed spatially periodic solutions of
Eq. ~3! are stable against the sideband perturbations if the
quantityx satisfies the conditions

91

144
,x,

11

12
.

However, the stability against the sideband perturbations is
only anecessarycondition: it does not guarantee stability for
disturbances withfinitewave numbers. In other words insta-
bility may be connected with modes from a band separated
from the Goldstone modes by a finite gap. For this reason the
stability analysis should be extended to the case of arbitrary
values ofz. To do this it is convenient to employ the Routh-
Hurwitz criterion @16#. Being applied to the problem under
consideration, the criterion says the number of unstable
branches of the spectrum described by Eq.~25! coincides
with the number of changes of sign in the sequence

1,c1 ,c1T,c3 , ~26!

wherec1,2,3 are defined according to Eq.~25b! andT stands
for the following quantity:

T[c1c22c35200z611354z41~576x2364!z2. ~27!

Since c1 is strictly positive, the only possibility for se-
quence~26! to have negative terms may be associated with
negativeness ofT or/andc3. It allows the following numbers
of changes of sign in sequence~26!: ~i! zero, ~ii ! one, and
~iii ! two. Case~i! obviously corresponds to stable perturba-
tions. Case~ii ! means that Eq.~25! hasoneandonly oneroot
with positive real part. Since Eq.~25! hasreal coefficients,

its complex roots must enter by a complex conjugate pair.
One and only one root with positive real part means that this
root must bepurely real.

Generally speaking, two roots with positive real parts may
mean either a pair of complex conjugate roots or two purely
real roots. However, the left-hand side of Eq.~25! is amono-
tonic function of z at z.0 and hence this equation cannot
have more thanonepurely real positive root. In other words
case~iii ! corresponds to a pair ofcomplex conjugate roots
with positive real part.

Note now that the quantityx parametrizes agiven spa-
tially periodic solution, whose stability againstanyperturba-
tion is studied. Therefore the most natural way to describe
the stability spectrum is to presentz as a function ofz,
consideringx as a parameter that may have different fixed
value.

Trivial analysis of Eqs.~25b! and ~27! shows thatT has
negative values inside a finite segment 0,z,zT(x) at
x,91/144, being positive at anyzÞ0 when x exceeds
91/144. As for the coefficientc3, it is strictly positive at any
zÞ0 if x,24513/576. At24513/576,x,11/12 there is a
finite segmentz1(x),z,z2(x) wherec3 is negative. The
left boundary of this segmentz1(x) is separated from the
point z50 by a finite gap untilx remains smaller than 11/12.
At x511/12 the gap vanishes, so that atx.11/12 the seg-
ment of negative values ofc3 is defined by the inequalities
0,z,z2(x) with finite z2(x). The behavior ofT andc3 as
functions ofz at different values ofx is shown in Fig. 1.

Summarizing these results, we arrive at the following
classification of the spectrum.

~i! x,24513/576. Inside the domain 0,z,zT(x) the
signs in sequence~26! are (1121), which corresponds to
two complex conjugate unstable Goldstone branches, i.e., to
oscillatory instability.

~ii ! 24513/576,x,91/144. The oscillatory instability of
the same kind as before (1121), accompanied in the do-
main z1(x),z,z2(x) by aperiodic instability (1112)
with purely real growth rate. Note thatz1(x) is always
greater thanzT(x), so that at anyx from the specified seg-
ment unstable oscillatory and aperiodic branches are sepa-
rated from each other by a finite gap of stable perturbations.

~iii ! 91/144,x,11/12. The sign sequence is
(1112), which means aperiodic instability in the domain

FIG. 1. QuantitiesT ~—! and c3 (22) as functions ofz at various fixed values ofx from different characteristic regions:~a!
x529,24513/576;~b! 24513/576,x526,91/144;~c! 91/144,x50.7,11/12@second intersection of the curvec3(z) with z axis lies
far to the right from the pointz51 and is not shown#; ~d! x51.11/12.
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z1(x),z,z2(x) — the only branch of unstable perturba-
tions is separated from the Goldstone modes by the finite gap
0,z,z1(x).

~iv! x.11/12. The same aperiodic branch (1112) de-
taches from one of the Goldstone modes (z150).

Thus, we can see that at 91/144,x,11/12 the system
does possess a band of unstable modes which are not related
to Goldstone branches. Since the solutions withx, lying out-
side this segment, are unstable for the sideband perturba-
tions, it means instability of all the spatially periodic solu-
tions obtained in Sec. I. To complete the discussion of these
properties of the spectrum, note that boundaries of different
bands of instability are defined by the conditionsT50 and
c350, respectively, which yields the band structure shown
in Fig. 2.

All results of the analytical study of the problem were
checked against computer simulation, whose detailed de-
scription as well as discussion of the asymptotic state of the
system att→` were reported elsewhere@12,17,18#. In all
cases for small perturbations the computed instability growth
rates coincide quantitatively with the results of analytical
consideration of the problem developed in the present paper
~see Fig. 3 as an example! and contradict to those of Ref.
@15#.

It is also worth mentioning the results of computer simu-
lations reported in Ref.@19#. The authors of this paper con-
sidered the equation of the type of Eq.~1! supplemented with
the third spatial derivative ofv, which adds to the depen-
dencegk the imaginary part of the form Imgk} ik

3. The
dynamics described in Ref.@19# corresponded to transforma-
tion of white-noise-like initial conditions into spatially peri-
odic patterns, which the authors identified as steady states.
The results seem to be in contradiction with those discussed
above. However, we have to emphasize that such a compari-
son of our results is irrelevant. Indeed, the third spatial de-
rivative breaks left-right parity of the problem@symmetry

transformation~6!#, which may bring about drastic changes
into the pattern stability spectrum@18#. Thus, any equation,
whose operator includes odd spatial derivatives, requires a
separate consideration, so the question about steady solutions
to governing equation of Ref.@19# and their stability, actu-
ally, remains open.

Note besides that, strictly speaking, the numerical results
of Ref. @19# are ambiguous and admit another interpretation.
The authors of this work point out that their numeric code is
stable only att,7/ Regk , i.e., the simulations cover just the
very initial stage of pattern dynamics. On the other hand, all
the patterns displayed in Ref.@19# as examples of the steady
states exhibit quite clear long-wavelength modulations that
may be regarded as the beginning of the instability discussed
in the present paper. An additional argument in favor of this
interpretation is that inall our simulations growth of unstable
long-wavelength modes, initially rather slow, suddenly, after
a certain induction time of several inverse«, becomes very
sharp~in the same time-scale, see Fig. 3! and gives rise to
dramatic increase of the corresponding amplitudes. Remark-
able agreement between the induction time and the stability
limit of the code in Ref.@19# provides grounds to suppose
that a similar change of the pattern dynamics may be the
actual reason for the numeric instability in work@19#.

Ending this section we would like to emphasize that since
the discussed instability is connected with the growth of
long-wavelength modes, the problem is very sensitive to cut-
off of the spectrum caused by finiteness of spatial size of a
real system~size-effect! that is important both for computer
simulations and for experimental verification of the instabil-
ity @12,17,18#.

IV. GENERAL DISCUSSION

Naturally, the instability of all steady spatially periodic
patterns governed by Eq.~3! is a specific peculiarity of this
particular equation. However, thefact that a pattern-forming

FIG. 2. The band structure of the spectrum of perturbations of
steady spatially periodic solutions to Eq.~3! in the x-z plane. Un-
hatched region corresponds to stable perturbations; hatched one in-
dicates aperiodic instability; cross-hatched region shows the range
of oscillatory instability. Note the gap between the two bands of
instability atz50 and 91/144,x,11/12.

FIG. 3. Growth of an unstable eigenmode from the band of
oscillatory instability of steady solution~13!. The solid line corre-
sponds to numerical integration of Eq.~3!, the dashed one displays
analytical expressionVp(t)5Vp(0)exp(st), wheres is given by
solution of Eq. ~25!; «51024, k51, p53.12531023,
ReVp(0)/A«50.01, ImVp[0. The induction time is about 4/« —
note the sharp divergence of the curves at«t.4 caused by nonlin-
ear effects.
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system may possess such a peculiarity at small values of the
control parameter is a generic property of problems with ad-
ditional symmetry@3,4,12,18# ~we remind the reader that at
small « the conventional systems without slow long-
wavelength dynamics always have a finite domain of stabil-
ity of these patterns, see, e.g.,@8#!.

Another generic property of the problem is the
«-scale-mixing. As a result, dispersion equation~21! con-
tains, in addition to the conventional quantityg19 , the deriva-
tives g1- andg28 @see Eq.~21d!#, that enter into the leading
approximation to the final stability conditions. Thus, the sta-
bility conditions depend on the ‘‘skewness’’ (g1-) of the
dispersion curvegk at the vicinity of the pointk51 and on
its slope far inside the stability region (g28). Besides, to ar-
rive at the specified accuracyO(«3) in the dispersion equa-
tion ~21! the quantitygk8 in the first term on the right-hand
side of Eq.~21d! must be expanded in powers ofk to order
« inclusively. Let us remember now that at smallk we have
gk85g181g19k1O(k2), whereg185O(«) andg195O(1), see
the discussion of Eq.~23! in the preceding section. Thus, at
k5O(«) the two first terms in the expansion ofgk8 in pow-
ers of k both are of order«. The latter means that neither
g18 nor g19k may be neglected in the expansion. In other
words the shift of the wave number, maximizinggk at finite
«, with respect to the pointk51 also yields a contribution to
the stability conditions in the leading approximation. All
these peculiarities make the pattern stability problem essen-
tially nonlocal and sensitive to very subtle details of the
spectrumgk .

As it was already mentioned in Sec. II, the actual grounds
for the «-scale-mixing are the presence of terms of order
«5/2 in the evaluated form of determinant~20!. In turn, there
are only two elements of the determinant of orderA«,
namely62k(6k1p)U6k , while the rest areO(«). Being
entirely responsible for the«-scale-mixing, these two ele-
ments both stand on the second row of the determinant. Tak-
ing into account, finally, that this row is originated in the
projection of the evolution equation for perturbation~18! on
the slowly varying mode with the wave number equal top,
and that this mode is the additional independent degree of
freedom associated with the symmetry transformation~7!,
we arrive at the conclusion that the additional symmetry is
the only cause of the mixing@20#.

Let us discuss now possible generalizations of the prob-
lem. With this end in view it is convenient to employ the
following representation of the governing equation:

]Uk

]t
5gkUk1E akk1k2

Uk1
Uk2

dk2k12k2
dk1dk21•••,

~28!

where presentlyUk(t) is the Fourier transform ofu(x,t) and
d stands for thed function. Equations of such a type are well
known in the pattern formation analysis, see, e.g., Refs.
@4,21#. Equations~1! and~3! are particular cases of Eq.~28!
with akk1k2

52 i (k11k2)/2 andakk1k2
5k1k2, respectively.

However, the convenience of Eq.~28! is associated with the
fact that steady solutions of this equation may be obtained
and their stability may be analyzed without concrete defini-
tion of the explicit form of the coefficientakk1k2

, provided

this coefficient is asmoothfunction ofk,k1 ,k2. Really, look-
ing for a spatially periodic solution to Eq.~28! that ink space
is described by a series of thed functions, it is easy to inte-
grate the equation. The integration yields a set of equations
for U ’s of the same type as that of Eq.~11!. Then, linearizing
Eq. ~28! about the steady periodic solution, representing per-
turbations as a Fourier transform of Eq.~18!, taking into
account that the integral in Eq.~28! is dominated by small
neighborhoods of pointsk50, 61, 62, . . . , andexpand-
ing akk1k2

in powers of deviations of its arguments from the
dominant points, we arrive at the system of linear equations
for V’s similar to Eq. ~19!. The only difference between
these two systems is that now coefficients describingU-V
coupling have a more general form obtained from the above-
mentioned expansion ofakk1k2

. The same reasons that forced
us to consider first corrections with relative smallness to or-
derA« in expansions of terms related togk are valid now for
the expansion ofakk1k2

too. Finally we obtain that besides

the sensitivity to subtle details of the spectrumgk , the gen-
eralized problem~28! is also sensitive to fine characteristics
of nonlinear mode coupling. The conclusion is identical to
those drawn in cases of the free-slip convection@3,4# and
reaction-diffusion systems subjected mean field effects@7#.
Extension of Eq.~28! to oscillatory short-wave instability
and/or a complex order parameter also is a straightforward
matter.

Let us discuss now possible application of the obtained
results to two more problems related to liquid crystals@9–14#
that were already mentioned in the Introduction. In case of
electroconvection in a homeotropically aligned nematic layer
~axes of molecules are perpendicular to boundary surfaces!
with negative dielectric anisotropy, the electric field, applied
across the layer, tries to turn the molecules parallel to the
layer’s plane, i.e., it conflicts with the orientation imposed by
the boundary surfaces. As a result theFréedericksztransition
@22# occurs beyond a certain critical value of the electric
field, and the equilibrium orientation of the molecules in the
midplane and its vicinity becomes tilted. Since there is not
any singled out direction in plane of the layer, the system
beyond the threshold of the Fre´edericksz transition is degen-
erate with respect to rotations around an axis perpendicular
to this plane. Usually the threshold of the Fre´edericksz tran-
sition lies below the one of the electroconvection, so that
close to onset of the convection the quiescent~convection-
less! state possesses the desirable additional symmetry, origi-
nated in the above-mentioned degeneracy.

Certainly, electroconvection patterns in this system are
two-dimensional, contrary to the one-dimensional problem
analyzed in the present paper. However, the detailed com-
parison of the stability spectra of roll-patterns in two- and
one-dimensional systems with additional symmetry devel-
oped in Ref.@18# indicates identity in all qualitative features
of the spectra, provided transformations of the additional
groups of symmetry in these systems are parametrized by
one continuous scalar quantity@23#. Thus, despite the differ-
ence in the spatial dimensionality, electroconvection under
the specified conditions may be a good tool to obtain experi-
mental evidence of the discussed peculiarities of Eq.~3!,
including possible instability of all spatially periodic pat-
terns. Indeed, the very first experimental studies of the phe-
nomena@10–12# detected already spatiotemporal chaos very
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similar to that observed in computer simulations of pattern
dynamics governed by Eq.~3! @12,17,18#. The chaos defi-
nitely was originated in the degeneracy caused by the Fre´ed-
ericksz transition: When the degeneracy was lifted by a mag-
netic field applied in the layer’s plane~the field breaks the
rotational symmetry! the chaotic patterns evolved to steady
spatially periodic rolls. However the ordering was reversible
— as soon as the magnetic field was switched off the chaos
was restored@11,12#. The framework of the present paper
does not allow us to pay more attention to this question. The
detailed discussion of this problem will be the subject of a
separate publication.

In case of the permeation of cholesteric or smectic liquid
crystals at their motion through a capillary, structures asso-
ciated with liquid crystal ordering~helical in cholesteric and
layered in smectic! are fixed due to anchoring effects at cap-
illary’s sidewalls. Thus, the hydrodynamic flow occurs as
motion of molecules through a fixed structure@13,14#.

Similarity of the problem to the pattern formation in sys-
tems with additional symmetry is clearly seen if one associ-
ates the liquid crystal ordering with short-wave instability of
a disordered state and the hydrodynamic flow with mean
field effects @24#. In this case the results discussed above
provide us with grounds to expect that coupling of short-
wave ~liquid crystal ordering! and long-wave~hydrody-
namic! fluctuations may destabilize the liquid crystal order-
ing dramatically and even suppress phase transition to the
ordered state at a certain range of values of thermodynamic
variables.

Ending the general discussion, we would like to empha-
size that an additional group of continuous symmetry
changes the pattern formation problem qualitatively. Among
other things, it may give rise to scale mixing in perturbative
expansions, so that a lowest approximation to initial under-
lying equations becomes irrelevant and yields a wrong dis-
persion relation in the corresponding pattern stability prob-
lem — the circumstance one should always keep in mind,
studying such systems.
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